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IN 1983 and 1984, the Infrared Astronomical Satellite (I'RAS) detected 5,425 steIlar objects and

measured their infrared spech-a. In 1987 a program called AUTOCLASS used Bayesian inference
methods to discover the classes present in these data and determine the most probable class of each

object, revealing unknown phenomena in astronomy. AUTOCLASS has rekindled the old debate on
the suitability of Bayesian methods, which are computationally intensive, interpret probabilities as
plausibility measures rather than frequencies, and appear to depend on a subjective assessment of

the probability of a hypothesis before the data were collected. Modern statistical methods have,
however, recently been shown to also depend on subjective elements. These debates bring into

question the whole tradition of scientific objectivity and offer scientists a new way to take

responsibility for their findings and conclusions.
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In 1983, NASA launched the Infrared Astronomical Satellite (IRAS), a joint project

of the United States, the Netherlands, and the United Kingdom. One of the instruments

aboard IRAS scanned the skies for objects emitting in the infrared band from 7 to 23

microns and measured their spectra. These infrared wavelengths are not observable from

earth because the atmosphere absorbs them and emits its own thermal radiation in this

band. IRAS performed the first such survey of the skies.

To eliminate any possibility that thermal radiation from the telescope or the

detectors might obliterate already-faint signals, the whole apparatus was cooled in liquid

helium (to about 2°K). It functioned for a year until the helium supply was exhausted,

scanning 96% of the sky before it ceased operation. For each stellar object detected,

IRAS recorded two celestial coordinates and 94 spectral intensities at preselected

wavelengths. The resulting 5,425 records make up what is now known as the IRAS

low-resolution spectral database.
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IRAS had been programmed to begin observations with the star Vega, which was to

be the calibrator for the instrument, but unexpected excess energy at the longer

wavelengths caused the selection of another star, Alpha Lyra, for this role. The anomaly

was quickly interpreted as evidence of a dust disk and a possible planetary system around

Vega, a discovery that received immediate attention in the media.

Over the next two years, the IRAS records were examined and grouped into classes

already known to astronomers. No new classes were invented to explain the records.

But this assay was inadequate to deal with a large database of complicated objects about

which little was previously known. A few astronomers were keenly interested in whether

any of the automatic learning systems under study by artificial intelligence (AI)

researchers might help them understand the data better.

In 1987, Peter Cheeseman of the Research Institute for Advanced Computer

Science, working with colleagues from the AI branch at the NASA Ames Research

Center, completed a program called AUTOCLASS, which was designed for automatic

classification of records in very large databases with many attributes (1). AUTOCLASS

calculates the most probable number of classes, the most probable parameters for each,

and the most probable class of each record. It was well suited to the task of sifting

through the IRAS data, and the IRAS data presented a challenging test case for

Cheeseman's design. AUTOCLASS discovered new classes that differ significantly

from those used for the earlier analysis and clearly represent unknown previously

physical phenomena.

Some observers have suggested that, because AUTOCLASS is a product of AI

research, it should be listed as one of the authors of the papers reporting the new
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discoveries in astronomy. AUTOCLASS, however, deals only with statistics of the

numbers in the database; its computation incorporates no information about astronomy.

It is meaningless to say that a program having no knowledge of the field can make a

discovery. It makes more sense to say that the program detects statistical patterns that

humans interpret as discoveries in astronomy. The same can be said about other AI

programs purported to have made discoveries in other disciplines.

AUTOCLASS is based on a principle of inference first enunciated by Thomas

Bayes in 1763. Suppose that D is a set of data and H1, .... Hn are distinct hypotheses.

The law of conditional probability sa3/s that

?l

p(D) = _.,p(D IHi)p(Hi). (1)
i=l

Bayes's theorem says that the probability any one of the conditions, say Hk, occurs given

D is the proportion ofp (D) contributed by the kth term:

p(HklD) = p(Hk)p(D IHk) (2)
p (D)

This theorem is often stated in the form, "The posterior probability of the hypothesis

given the data is proportional to the product of the prior probability of the hypothesis and

the likelihood of the data given the hypothesis," where 1/p (D) is the constant of

proportionality. Bayes's theorem shows how to calculate a backward inference,

sometimes called "reversed conditioning" or"inverse probability."

Now suppose that we interpret the Hi as possible models (hypotheses) that explain

given experimental data D. Given any model, one can calculate the likelihood that the

data will be observed in that model, p (D IHi). If one also has a value for the prior
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probability of each model, p (Hi), one can use Bayes's theorem to calculate the

probability of each model given the data. It is then reasonable to say that the "best"

model is the most probable one according to this calculation. This is called Bayesian

inference. In his book, Larry Bretthorst treats many estimation methods based on this

principle (2).

In this approach, probabilities are interpreted not as frequencies observable through

experiments, but as degrees of plausibility one assigns to each hypothesis based on the

data and on one's assessment of the plausibility of the hypotheses prior to seeing the

data. The idea that probabilities must stand for something observable (i.e., frequencies)

is closely related to deeply-rooted beliefs in Western scientific tradition. I will return to

this point later.

According to Edwin Iaynes, Bayes's arguments about inverse probability were

nearly incomprehensible (3). But Laplace rediscovered the principle in 1774 and, for the

next 40 years, applied it with great clarity to problems of astronomy, geodesy,

meteorology, population statistics, and even jurisprudence. Jaynes cites the story of

Laplace's estimate of the mass of Saturn to illustrate the power of the method. Using

data on the mutual perturbations of lupiter and Saturn, Laplace estimated that Saturn's

mass is 1/3512 of the solar mass and gave a probability of 0.99991 that the true mass is

within 1% of this estimate. The modem value for Saturn's mass is put at 0.63% higher,

near the upper end of Lapl_ce's range.

The AUTOCLASS program applies Bayesian inference to determine the most

probable classification of given data. In the case of the IRAS data, it assumes that the

spectral intensity at each wavelength is accounted for by a normal distribution whose
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parameters come from one of N classes. Each class has a vector of parameters, the

means and variances for each of the 94 intensities making up a spectrum. To specify a

hypothesis, we need to state a value of N, a vector of 94 means and variances for each

class, and a probability that each of the 5,425 records belongs to each particular class --

just over 106 numbers in all. Constructing a sample of several million hypotheses of this

type from the astronomically large space of all possible hypotheses, and then applying

Bayes's theorem to find the best, would far exceed the processing capacity of any

existing supercomputer. Instead of an enumeration' AUTOCLASS uses a search

procedure to modify a current hypothesis iteratively and obtain a maximum of equation

(2). The search procedure contains extra steps to attempt escape from local maxima.

When it completes its search, AUTOCLASS has constructed a locally most likely

hypothesis that explains the data. AUTOCLASS takes about 36 hour_ on a Symbolics

computer to process the IRAS data.

Even though it incorporates many approximations, AUTOCLASS has performed

remarkably well on real databases and has outperformed other methods such as cluster

analysis. In the IRAS database, it found classes agreeing with those determined

previously by astronomers, and it produced several new discoveries. It found the

previously known classes in databases of iris plants, soybean diseases, and horse colic

cases (1). When applied to data artificially generated from known class distributions, it

found the parameters of those distributions. When applied to random data from a single

distribution it found only one class, as it should.

Rather than being welcomed within the AI research community as a promising new

approach to machine learning, the principles of Bayesian inference underlying the
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AUTOCLASS program have been the subject of spirited debate. Should logic or

probability be the basis of inference? A recent issue of a major journal published a

lengthy debate on this question between Cheeseman and 23 of his critics (4). Cheeseman

goes well beyond asserting that Bayesian methods look promising in practice; he argues

that probabi!istic inference is fundamental to human reasoning. Having reminded his

readers that he interprets probabilities as plausibility measures rather than relative

frequencies, he notes a proof by R. T. Cox in 1946 that any system of plausibility

measures that assigns a real number to each proposition and the same real number to

logically equivalent propositions must satisfy the axioms of probability theory.

According to Cheeseman, conditional probabilities behave the way people's beliefs do;

new information can either increase or decrease one's belief in a proposition, and

different people assign different plausibilities to the same proposition.

Cheeseman's critics say that Bayesian inference is far more demanding

computationally than deductive logic, suggesting that a computation barrier will prevent

wide application of Bayesian methods. They say that one can use "possibility theory"

or "fuzzy logic," two systems that do not obey the sum and product rules of probability,

to construct computationally feasible augmentations of deductive logic with plausibility

measures. They also say that, to use Bayes's theorem, one must already have the prior

probability of the hypothesis, p (H), which can only be a subjective assessment before

any data are taken; they say that this lack of objectivity offends the fundamental

traditions of science.

The debate among At researchers mirrors a much older debate among statisticians

and philosophers about Bayesian inference. That debate also focuses on the feasibility of
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thecalculationsandtheapparentviolation of scientificobjectivity. As we haveseen,

modemhigh-speedcomputersarerapidlyunderminingtheargumentabout

computationalfeasibility, leavingobjectivity asthemainunresolvedissue.

JamesBergerandDonaldBerryhaverecentlyquestionedthesupposedobjectivity

of modemstatisticalmethods.(5). Using these methods, one searche_ for experimental

outcomes that cast doubt on the negation of the desired hypothesis; the aggregate

probability among all possible outcomes that cast at least as much doubt as the observed

data is called the significance level. The significance level depends on the intended

experimental procedure: two experiments with identical outcomes but different designs

will have different significance levels. This happens because the significance level

depends on data that might have been observed but were not, and that depends on the

experimental design. An observer of the two experimenters would see no difference

between their actions and, on hearing them declare different significance levels, would

conclude that there were subjective elements (things known only to each experimenter)

in the conclusions. Bayesian inference also has a subjective element -- the prior

probability of the hypothesis -- but, say Berger and Berry, this is explicitly in the hands

of the consumer rather than the producer of the results. They maintain that no known

statistical inference method produces conclusions free of subjective influence.

That the scientific method is fundamentally objective is a notion deeply rooted in

Westem tradition. Philosopher and historian James Burke questions this notion,

documenting the history of the idea that there are objective realities independent of

human observation (6). His examination of science through the ages shows that

contemporary theories influence the types of investigations people undertake and that the
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"structureof interpretation" within agivensocietyaffectswhichhypotheses and data

are admissible. Each age believes its science is objective, and the next age refutes this.

Following the example of our forebears, we also say, "Science is objective," and yet

doubts about objective reality persist.

What if what we call objective reality is simply an interpretation of data agreed to

by large numbers of people? What if the contribution of science is a way of defining

"standard observers" that always produce the same data no matter who follows its rules?

Burke says that such interpretations would actually lend power to science. By adopting

them, we would acknowledge that much of what we call objectivity is an illusion created

by agreements on standard observers. We would be able to accept responsibility for the

influence of our own prejudices, biases, and interpretations on the results of our

experiments.
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AUTOCLASS discoveries

In 1983 and 1984, the Infrared Astronomical Satellite (IRAS) detected 5,425 stellar objects and

measured their infrared spectra. A program called AUTOCLASS used Bayesian inference methods to

discover the classes present in the data and determine the most probable class of each object. It discovered

some classes that were significantly different from those previously known to astronomers. One such

discovery is illustrated in the accompanying picture. Previous analysis had identified a set of 297 objects

with strong silicate spectra. AUTOCLASS partitioned this set into two parts (top). The class on the left

(171 objects) has a peak at 9.7 microns and the class on the right (126 objects) apeak at 10.0 microns.

When the objects are plotted on a star map by their celestial coordinates (bottom), the fight set shows a

marked tendency to cluster around the galactic plane, confirming that the classification represents real

differences between the classes of objects. AUTOCLASS did not use the celestial coordinates in its

estimates of classes. Astronomers are studying the phenomenon further to determine the cause.
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